

WIRE DEGRADATION STUDY PHASE I RESULTS

Prepared for:

Aging Transport Systems
Rulemaking Advisory Committee

25 April 2002

David Lee 609-485-7236 david.lee@tc.faa.gov

Purpose

Identify degradation levels of currently used electrical wire insulation types as part of an effort to ensure safe, long term operation of commercial aircraft electrical interconnect systems

Goals

- Determine degradation mechanisms
- Develop characterization data for the degradation mechanisms
- Characterize effect(s) of major perturbations to the aging process
- Model degradation behavior (Algorithms)
- Establish behavior/degradation relationships

Schedule

Phase I – Planning 9/1/01 – 4/30/02

Phase II – Execution 5/1/02 – 12/31/02

Phase III – Reporting 1/1/03 – 8/31/03

PHASE I - Planning

- Determined the major degradation modes and influencing conditions
 - Comprehensive list
 - Considered the universe of variables
 - Prioritized to fit scope of effort
- Designed experiments to quantify/assess degradation modes
- Coordinated with major stakeholders
- Developed Quality Assurance Plan for test program

Coordination w/Stakeholders

- Direct teaming with technical experts
 - Established team lead
 - Coordinated planning & execution
 - Built team with knowledge & skills
- Indirect teaming with aerospace industry
 - Obtained details related to environments, wire problems, wire degradation modes

Direct Team

Raytheon Technical Services (lead)
 Brookhaven National Laboratories
 Sandia National Laboratories
 Lectromechanical Design Company
 Qualstat Services

Indirect Team

Boeing Company

QinetiQ

Bombardier Aerospace

United Airlines

Barcel/CDT

NASA

Dupont Company

Airbus Industries

Northwest Airlines

SR Technics

Tensolite Company

Airtran

Tyco Electronics (Raychem)

Degradation Modes

- Performed extensive literature search
 - Qualified Product List performance data
 - FAA Intrusive/Non-Intrusive Inspection
 - Incident reports (Commercial and Military)
 - Professional organization reports & documents
 (SAE, NEMA, ASTM, IEEE, etc)
- Received direct aircraft industry input
 - Problem areas
 - Wire failure modes
 - Related conditions and environments
- Received industry comments on test methodology and test plan

Major Drivers/Factors of Degradation

- Temperature
 - polymers soften/harden, out-gas, change state, accelerates other temperature dependant variables (oxidation, hydrolysis, and other chemical reactions)
- Humidity
 - enhances brittleness & molecular changes
- Fluids
 - high pH cleaners breakdown chemical structure, polymer swelling
- Mechanical stress
 - strains can induce yielding or fatigue, accelerate other stresses
- Electrical Potential
 - higher voltages can punch holes in insulation
- Time
 - common factor of all drivers

Other Degradation Drivers Not Included

- Left out due to practical boundaries of program resources
 - Biological & Low Level Radiation
 - Environmental contamination (exhaust gases, pollution, Ozone, NOx, etc.)
 - Higher Level Radiation
 - Ultra-violet
 - Gamma
 - Low level electrical potential
 - Vacuum (pressure)

Information Received from Survey

- Inputs to test methodology
- Inputs to test plan
 - Questioned some test methods
 - Recommendations of additional test methods
 - Recommendations of stressors
- Aircraft environmental conditions
- Anecdotal experiences of wire degradation modes

Degradation Evaluation Method

- Expose wire samples to different sets of single & multiple environments
- Measure characteristics of the material(s) through standard and novel test methods
- Analyze data collected
- Compare to noted field issues
- Incorporate results into a degradation model

Test Methods

- Dielectric Withstanding Voltage (DWV)
- Insulation Resistance (IR wet, IR dry)
- Conductor Resistance
- Die-electric Loss (Dissipation Factor)
- Time Domain Reflectometry (TDR)
- % Elongation & Tensile Strength
- Weight Loss
- Flammability
- Functional Performance Testing
- Hardness Modulus
- Tera-Hertz Reflectometry
- Inherent Viscosity
- Kinetics and mass loss by Thermal Gravimetric Analysis (TGA)
- Density
- Oxidation Induction Time
- WIDAS
- Fourier Transform Infrared Spectroscopy (FTIR)
- Ultra-violet/Visible Spectroscopy (UV/VIS)

Environmental Exposures

- Mechanical aging
 - Bending and flexing
 - Vibration w/abrasion
- Temperature aging
- Temperature cycling
- Fluid aging w/temperature and mechanical
- Humidity aging w/temperature and mechanical
- Electrical aging in all environments

Mechanical Degradation

- Unbent sample
- 10x static wrap (see AS50881A)
- 10x dynamic bending
 - ASTM D3032 procedure for 2 cycles
- 3x dynamic bending
 - ASTM D3032 procedure for 2 cycles
- Vibration/abrasion MIL-W-22759 mark durability method or SAE AS4373 method 711 abrasion (modified)

Temperature Environments

- Temperature cycling SAE AS4373 Procedure
 - 100 cycles from -55C to +85C
- Standard temperature exposure
 - Range of temperatures for each insulation type varies between 100C and 300C depending on the material type
 - Lowest temperature slightly above wire temperature rating

Fluid Soaking

- Fluids
 - Common fluids seen by exterior aircraft components
 - Hydraulic fluid
 - Airframe cleaner
 - Glycol based de-icing fluid
- Immerse 1 hour @ 50C
- Temperature exposure (bake)
 - Temperature determined from first round of testing
 - Time of exposure determined from first round of testing

Humidity/Temperature Aging

- Humidity levels
 - **70%**
 - **85%**
 - **100%**
- Temperature levels
 - 70C to 95C

Wire Types for Evaluation

Aromatic Polyimide (BMS13-51)

XL-Alkane-Imide (BMS13-42A & B)

PVC/Glass/Nylon (BMS13-13)

to use PVC/Nylon versions in tests

Wire Types for Future Evaluation

XL-ETFE (BMS13-48)

PTFE/Polyimide/Composite (BMS13-60)

Aromatic Polyimide (AK/CF Europe)

Extruded outer layer of FEP or PTFE

l odolina	Dogradation Times and Property Results		
loueling	Degradation Times and Property Results		
1odel :	Log Time = [a + b*(1/Temp) + c*(#Cycles stressed)]	Log time	
	f (Property) = model of similar form? linear, quadratic, etc.		
			1 / Temp
4-1-1-1			
	oped for each combination of Dynamic Stressor Test and Aging Condition. Severa		·
	s/curves different? Compare intercepts (a) and slopes (b) and other coefficients (`	, etc.
Vill alea car			

Perturbations Identified

- Wiring system design anomalies
 - Uncontrolled chemical/mechanical/thermal stresses
 - Electrical overload & arcing
- Wirings system installation anomalies
 - Hot Stamp Marking Process
 - Excessively Tight Bends
 - Excessive force during pull through
- Wiring system maintenance practices
 - Excessive flexing
 - Handholds
 - Debris from drilling & grinding
- Operational Extremes
 - Exposure to dust & debris, sand
 - Lightning
 - Excessive vibrations

Quality Assurance Plan

- Results must be
 - High Quality
 - Traceable
 - Defensible
- Strict Controls for
 - Documentation (Test procedures and Data)
 - Equipment calibration
 - Handling, storage, shipping of specimens
- Utilizes performance based independent assessments of the laboratories including audits (Raytheon QA department)
- Roles & responsibilities of participants

PHASE II Execution

- 20 month effort
- Raytheon Technical Services Company
 - supported by the direct team
- Perform wire aging, testing and data collection
- Schedule
 - 5/1/02 12/31/02

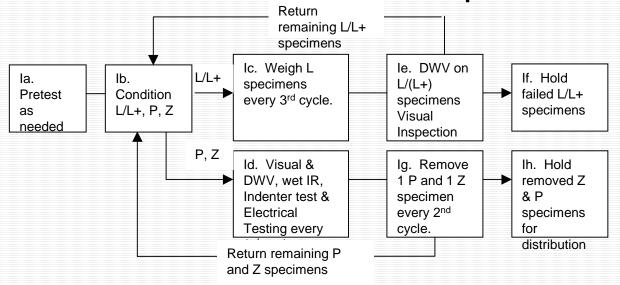
Evaluation Program

- Mechanical/temperature/fluid aging
 - approximately 147 test setups
- Humidity/temperature aging
 - approximately 25 test setups

172 total test setups

		CONI				IT IO N S					
		A /A 2	l B	C/C3	l p	E/E'	F	G	н	T T	T
			% RH - ove			5 RH	85% - 25% R H, cycled	85%		100% (Imme	S R H ers io n)
W IR E TYPE	STRESSORS	Straight	10 x static strain	6 x/1 x static strain	10 x static strain	6 x/1 x static strain	10 x static strain	Straight	10 x static strain	Straight	10 x static strain
PI	1. No "stressor" protocol (only DW V test)	260 ² , 280, 300 ²	260, 280,	300/300	95	95/95					95
PΙ	2. Dynamic bend (roll up/down x 2) - 10x mandrel (A STM std.)	$250^2 * ,265$,280, 300 ²	250, 280, 300		70*,95		70	95*	70,95	95	45, 70, 95
PI	3. Dynamic bend (roll up/down x 2) - 3x mandrel	250, 275, 300	280		Unfailed to J			Unfailed to			Others to failure, 70
PI	4. Temp Shock (100 cycles, -55° to +85° C) 5. Vibration (abrasion)	3	3 1								
PΙ	6. Fluid soak preceded by 10x mandrelbend 1. No "stressor" protocol (only DW V test)	$\frac{1}{a^2, b, c^2}$	1 3								
PI/PT FE	2. Dynamic bend (roll up/down x 2) - 10x mandrel (A STM std.)	$260^2, 275, 285, 300^2$	3						95		70,95
	3. Dynamic bend (roll up/down x 2) - 3x mandrel	3	1								
	4. Temp Shock (100 cycles, -55° to +85° C)	1	3								
	5. Vibration (abrasion)	3	1								
	6. Fluid soak preceded by 10x mandrel bend	1	1								
	1. No "stressor" protocol (only DW V test)	a ² , b, c ²	3								
	2. Dynamic bend (roll up/down x 2) - 10x mandrel (A STM std.)	$\begin{bmatrix} 200^2, 220, \\ 235, 250^2 \end{bmatrix}$	200, 230, 250								9.5
	3. Dynamic bend (roll up/down x 2) - 3x mandrel	3	1								
	4. Temp Shock (100 cycles, -55° to +85° C)	1	3								
XLETFE	5. Vibration (abrasion)	3	1								
XLETFE	6. Fluid soak preceded by 10x mandrel bend	1	1								
XPI	1. No "stressor" protocol (only DW V test)	3	3								9 5
XPI	2. Dynamic bend (roll up/down x 2) - 10x mandrel (ASTM std.)	4	3						70,95	95	70,95
XPI	3. Dynamic bend (roll up/down x 2) - 3x mandrel	3	1								
XPI	4. Temp Shock (100 cycles, -55° to +85° C)	1	3								
XPI	5. Vibration (abrasion)	3	1								
XPI	6. Fluid soak preceded by 10x mandrel bend	1	1								
	1. No "stressor" protocol (only DW V test)	3	3								
	2. Dynamic bend (roll up/down x 2) - 10x mandrel (ASTM std.)	4	3								95
	3. Dynamic bend (roll up/down x 2) - 3x mandrel	3	1								
	4. Temp Shock (100 cycles, -55° to +85° C)	- 1	3								
	5. Vibration (abrasion)	3	1								
PVC/Nylon	6. Fluid soak preceded by 10x mandrel bend	1	1								
	- these conditions are not expected to fail, but	will be remo	ved in one	vear and plac	ed in the W	IDAS test to	0	•			

Notes: * - these conditions are not expected to fail, but will be removed in one year and placed in the WIDAS test t failure.


- $2\,-\,$ Condition A $2\,$ will be run at the identified temperatures .
- 3 Condition C3 and E3 will be run at the identified temperatures.

		AA^2	В	
		(% RH- ove	ns
WIRE TYPE	STRESSORS	Straight	10x static strain	
	1 N	202 200		
PI	1. No "stressor" protocol (only DWV test)	260 ² , 280, 300 ²	260, 280, 300	

Test Protocol for 1 Stressor @ 1 Condition for 1 Temperature

11 Specimens (L), 14 Property Specimens (P), 6 control specimens (z)

PHASE III Reporting

- Data analysis
- Formulate Models
- Final Report

Questions & Answers